一5ady、性质不同
1、dy:表示微分,dy=A×Δx,当x= x0时,则记作dy∣x=x0。
2、Δy:表示函数的增量;自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx)。
二、表达式不同。
1、dy:=f'(x)dx;f'(x)表示函数f(x)的导数。
2、Δy:=f(x+Δx)-f(x)。
扩展资料:
微分的几何意义:
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。
当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。